Senin, 22 November 2010

Vektor dalam Ruang Euklide

Euklidian dalam n-Ruang


Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.
Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.
Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.

u1 = v1 u2 = v2 un = vn
Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v2, u2 + v2, ...., un + vn)
Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh

ku = (k u1, k u2,...,k un)
Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor

0 = (0, 0,...., 0)
Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh

-u = (-u1, -u2, ...., -un)
Perbedaan dari vector dalam Rn dijelaskan oleh

v – u = v + (-u)
atau, dalam istilah komponen,

v – u = (v1-u1, v2-u2, ...., vn-un)
Sifat-sifat dari vektor dalam Rn
jika \mathbf{u} = u_{1}, u_{2},..., u_{n} , \mathbf{v} = v_{1}, v_{2},..., v_{n} , dan \mathbf{w} = w_{1}, w_{2},..., w_{n} adalah vektor dalam Rn sedangkan k dan m adalah skalar, maka :
(a) u + v = v + u
(b) u + 0 = 0 + u = u
(c) u + (v + w) = (u + v) + w
(d) u + (-u) = 0 ; berarti, u - u = 0
(e) k (m u) = (k m) u
(f) k (u + v) = k u + k v
(g) (k + m) u = k u + m u
(h) 1u = u

Perkalian dot product \mathbf{u}\cdot\mathbf{v} didefinisikan sebagai

\mathbf{u}\cdot\mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}

[sunting] Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

  • Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector y = (y1,y2,...,yn) dalam Rn dalam setiap y1,y2,....,yn adalah nilai yang terukur.
  • Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel x = (x1,x2,...,x15) dalam setiap x1 adalah jumlah truk dalam depot pertama dan x2 adalah jumlah pada depot kedua., dan seterusnya.
  • Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam R4 dan tegangan output bisa ditulis sebagaiR3. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input v = (v1,v2,v3,v4) dalam R4 ke vector keluaran w = (w1,w2,w3) dalamR3.
  • Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk v = (x,y,h,s,b) dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.
  • Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel s = (s1,s2,s3,...,s10) dalam setiap angka s1,s2,...,s10 adalah output dari sektor individual.
  • Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalahx1,x2,...,x6 dan kecepatan mereka adalah v1,v2,...,v6. Informasi ini bisa direpresentasikan sebagai vector
V = (x1,x2,x3,x4,x5,x6,v1,v2,v3,v4,v5,v6,t) Dalam R13. Vektor ini disebut kondisi dari sistem partikel pada waktu t.
  • Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Tidak ada komentar:

Posting Komentar