Senin, 22 November 2010

ARSITEKTUR KOMPUTER

Sampai saat ini komputer sudah mengalami perubahan dari model awalnya,
walaupun begitu semua komputer memiliki arsitektur dasar yang sama. Skema komputer
(computer schema), adalah diagram yang menggambarkan unit-unit dasar yang terdapat
dalam semua sistem komputer.

1. Central processing unit (CPU), yang mengendalikan semua unit sistem komputer
yang lain dan mengubah input menjadi output.
• Primary storage (penyimpanan primer), berisi data yang sedang diolah
dan program.
• Control unit (unit pengendali), membuat semua unit bekerja sama sebagai
suatu sistem
• Arithmatika and logical Unit , tempat berlangsungkan operasi
perhitungan matematika dan logika.
2. Unit Input, memasukkan data ke dalam primary storage.
3. Secondary storage (penyimpanan sekunder), menyedikan tempat untuk
menyimpan program dan data saat tiak digunakan.
4. Unit Output, mencatat hasil pengolahan.

I. Peralatan Input
Beberapa alat input memiliki fungsi ganda, yaitu sebagai alat input dan juga
sebagai alat output untuk menghasilkan data. Alat input/ouput demikian dikenal dengan
terminal. Alat input dibagi ke dalam dua golongan yaitu alat input langsung dan tidak
langsung. Bila terminal dihubungkan dengan pusat komputer yang letaknya jauh dari
terminal melalui alat komunikasi, maka disebut dengan nama Remote Job Entry (RJE)
terminal atau Remote Batch terminal.

Alat input langsung memungkinkan input diproses secara langsung oleh CPU
melalui alat input tanpa terlebih dahulu dinmasukkan ke dalam media penyimpanan
ekternal. Alat input langsung terdiri dari beberapa golongan yaitu: keyboard, pointing
device, scanner, voice recognizer.
Alat input tidak langsung , dimana data yang dimasukkan tidak langsung diproses
oleh CPU, tetapi direkam terlebih dahulu ke suatu media mechine readable form (bentuk
yang hanya dapat dibaca oleh komputer dan merupakan penyimpanan ekternal). Alat
input tidak langsung terdiri dari: key-to-card, key-to-tape, key-to-disk.
Input hardware digunakan untuk mentranmisikan data ke processing dan storage
hardware. Peralatan yang paling popular untuk memasukkan data yaitu kombinasi antara
keyboard dan layar monitor. Layar monitor dianggap sebagai bagian dari input hardware
kerena digunakan untuk memeriksa apakah data yang akan dimasukkan telah diketik.
Disamping jenis input hardware di atas, terdapat juga input harware lainnya yaitu mouse,
scanner, voice recognition, handwriting device, machine data input (misalnya :
modem),light pen, dan bar code reader.
Voice recognition device dipakai untuk memasukkan suara manusia ke dalam
signal interpreter. Kebanyakan voice system yang digunakan sekarang mempunyai
vocabulary yang kecil dan harus dilatih untuk mengenal kata-kata tertentu. Caranya,
seseorang membacakan sebuah daftar kata-kata yang biasa digunakan sehingga signal
interpreter dapat menetapkan polanya. Misalnya pekerja menyebut box yang mereka
bawa. Voice input diperlukan karena tangan pekerja sibuk dan tidak dapat mengetik atau
memanipulasi peralatan ketik input device lainnya.
Hardwriting recognition device digunakan untuk memasukkan data dengan cara
menulis pada elektronis yang sensitive. Karakter-karakter tersebut dikenal dan
dimasukkan ke dalam system computer, biasanya suatu system PC (personal computer).
1. 1 Keyboard
1. 2 Mouse
1. 3 Scanner

II. MEMORY SEKUNDER ( SECONDARY
MEMORY )
Memory sekunder, dipergunakan untuk menyimpan data, informasi, dan program
secara permanen sebagai berkas atau file. Contoh memory sekunder adalah floppy disk,
hard disk, zipdrive, CD-Rom, DVD, dan lain-lain. Sebagian besar memory sekunder saat
ini berbentuk disk/cakram/piringan. Operasi terhadap data, informasi, dan program
dilakukan dengan perputaran disk. Satu putaran piringan disebut RPM ( Rotation Per
Minute ). Semakin cepat perputaran, maka waktu akses akan semakin singkat. Hal ini
mengakibatkan semakin besar tekanan terhadap disk dan semakin besar panas yang
dihasilkan. Jenis memory sekunder yang akan digunakan akan menentukan kecepatan
akses dan metode akses data. Beberapa contoh ukuran kecepatan memory sekunder
adalah sebagai berikut.
• Pre-IDE : Memiliki kecepatan 3600 RPM
• IDE : Memiliki kecepatan 5200 RPM
• IDE/SCSI : Memiliki kecepatan 5400 RPM
• IDE/SCSI : Memiliki kecepatan 10000 RPM
Memory sekunder memiliki alat untuk membaca dan menulis. Alat
untukmembaca dan menulis pada harddisk disebut head sedangkan pada floppy disk
disebut side. Setiap piringan dalam disk memiliki 2 sisi head/side, yaitu sisi 0 dan sisi 1.
Head/side dibagi menjadi sejumlah lingkaran konsentrik yang disebut track. Kumpulan
track yang sama dari sebuah head yang ada disebut cylinder. Pada suatu track dibagai
menjadi daerah-daerah lebih kecil yang disebut sector. Gambaran tentang cylinder,
sector, track dsitunjukkan oleh gambar 2.8.7
Berkas yang disimpan dalam memory sekunder dapat berinteraksi dengan
peralatan input/output dengan perantara suatu unut pengolah ( processor ).
Memory sekunder mempunyai karakteristik sebagai berikut.
1. Sifat penyimpanan yang tetap ( persistent ), sehingga media penyimpanan
sekunder perlu dipisahkan dari unit pengolah utama ( central prosessing unit/
CPU ) dan memory utama ( main memory ), dan di hubungkan oleh kabel/bus ke
unit pengolah ( prosessor ) dan memory utama ( main memory )
2. Kemampuan untuk digunakan secara bersama-sama ( shareability )
3. Kemampuan untuk menyimpan sejumlah data, informasi, dan program
Langkah pengolahan data daeri dalam memory sekunder adalah sebagai berikut.
1. Menentukan lokasi data pada memory eksternal (external memory/storage )
2. Prosessor akan membaca data, dan menyalin data dari memory eksternal
( external memory/storage ) ke memory utama (main memory)
Pada saat menupdate data, maka salinan data dalam main memory yang telah
diubah akan dituliskan, yaitu dipindahkan dari main memory ke memory sekunder
Berdasarkan medianya, memory sekunder terdiri atas :
1. Optical disk
• Memnggunakan prinsip optis, yaitu berdasarkan pantulan cahaya ( sinar
laser ) pada head baca.
• Pembacaan data tidak melibatkan kontak fisik antara head dan disk
• Proses penulisan datanya lebih lambat dari pada proses pembacaan data
• Lebih awet tahan terhadap jamur, dan lain-lain
• Pembacaan data secara acak ( Random )
• Mempunyai kemampuan baca-tulis ( read/write )
• Kapasitas besar
• Ukuran kecil
• Contoh : cd rom
8.2. Magnetik storage
• Dapat terbentuk disk/tape
• Media penyimpanan ini menggunakan bahan serbuk magnet
• Akses data menggunakan prinsip induksi magnetis
• Jenis ini terdiri atas magnetic tape dan magnetic disk

2. 1 Magnetic Tape
2. 2 Hard Disk
2. 3 Removable Hardisk
2. 4 Floppy Disk/Disket
2. 5 Zip Drive. dll

Vektor dalam Ruang Euklide

Euklidian dalam n-Ruang


Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.
Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.
Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.

u1 = v1 u2 = v2 un = vn
Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v2, u2 + v2, ...., un + vn)
Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh

ku = (k u1, k u2,...,k un)
Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor

0 = (0, 0,...., 0)
Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh

-u = (-u1, -u2, ...., -un)
Perbedaan dari vector dalam Rn dijelaskan oleh

v – u = v + (-u)
atau, dalam istilah komponen,

v – u = (v1-u1, v2-u2, ...., vn-un)
Sifat-sifat dari vektor dalam Rn
jika \mathbf{u} = u_{1}, u_{2},..., u_{n} , \mathbf{v} = v_{1}, v_{2},..., v_{n} , dan \mathbf{w} = w_{1}, w_{2},..., w_{n} adalah vektor dalam Rn sedangkan k dan m adalah skalar, maka :
(a) u + v = v + u
(b) u + 0 = 0 + u = u
(c) u + (v + w) = (u + v) + w
(d) u + (-u) = 0 ; berarti, u - u = 0
(e) k (m u) = (k m) u
(f) k (u + v) = k u + k v
(g) (k + m) u = k u + m u
(h) 1u = u

Perkalian dot product \mathbf{u}\cdot\mathbf{v} didefinisikan sebagai

\mathbf{u}\cdot\mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}

[sunting] Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

  • Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector y = (y1,y2,...,yn) dalam Rn dalam setiap y1,y2,....,yn adalah nilai yang terukur.
  • Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel x = (x1,x2,...,x15) dalam setiap x1 adalah jumlah truk dalam depot pertama dan x2 adalah jumlah pada depot kedua., dan seterusnya.
  • Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam R4 dan tegangan output bisa ditulis sebagaiR3. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input v = (v1,v2,v3,v4) dalam R4 ke vector keluaran w = (w1,w2,w3) dalamR3.
  • Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk v = (x,y,h,s,b) dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.
  • Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel s = (s1,s2,s3,...,s10) dalam setiap angka s1,s2,...,s10 adalah output dari sektor individual.
  • Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalahx1,x2,...,x6 dan kecepatan mereka adalah v1,v2,...,v6. Informasi ini bisa direpresentasikan sebagai vector
V = (x1,x2,x3,x4,x5,x6,v1,v2,v3,v4,v5,v6,t) Dalam R13. Vektor ini disebut kondisi dari sistem partikel pada waktu t.
  • Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Matriks Diagonal, Segitiga, dan Matriks Simetris

Matriks Diagonal
Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :
\begin{bmatrix}
1 & 0\\
0 & -5\\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & -5 & 0\\
0 & 0 & 1\\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}
secara umum matriks n x n bisa ditulis sebagai
\begin{bmatrix}
d_1 & 0 & \cdots & 0\\
0 & d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n\\
\end{bmatrix}

Matriks diagonal dapat dibalik dengan menggunakan rumus berikut :
D − 1=\begin{bmatrix}
1/d_1 & 0 & \cdots & 0\\
0 & 1/d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & 1/d_n\\
\end{bmatrix}
DD − 1 = D − 1D = I
jika D adalah matriks diagonal dan k adalah angka yang positif maka
Dk=\begin{bmatrix}
d_1^k & 0 & \cdots & 0\\
0 & d_2^k & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n^k\\
\end{bmatrix}
Contoh :
A=\begin{bmatrix}
1 & 0 & 0\\
0 & -3 & 0\\
0 & 0 & 2\\
\end{bmatrix}
maka
A5=\begin{bmatrix}
1 & 0 & 0\\
0 & -243 & 0\\
0 & 0 & 32\\
\end{bmatrix}

[sunting] Matriks Segitiga
Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.
Matriks segitiga
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14}\\
0 & a_{22} & a_{23} & a_{24}\\
0 & 0 & a_{33} & a_{34}\\
0 & 0 & 0 & a_{44}\\
\end{bmatrix}
Matriks segitiga bawah
\begin{bmatrix}
a_{11} & 0 & 0 & 0\\
a_{21} & a_{22} & 0 & 0\\
a_{31} & a_{32} & a_{33} & 0\\
a_{41} & a_{42} & a_{43} & a_{44}\\
\end{bmatrix}
Teorema
  • Transpos pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.
  • Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.
  • Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol.
  • Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks segitiga atas adalah matriks segitiga atas.
Contoh :
Matriks segitiga yang bisa di invers
A =\begin{bmatrix}
1 & 3 & -1\\
0 & 2 & 4\\
0 & 0 & 5\\
\end{bmatrix}
Inversnya adalah
A − 1=\begin{bmatrix}
1 & -3/2 & 7/5\\
0 & 1/2 & -2/5\\
0 & 0 & 1/5\\
\end{bmatrix}
Matriks yang tidak bisa di invers
B =\begin{bmatrix}
3 & -2 & 2\\
0 & 0 & -1\\
0 & 0 & 1\\
\end{bmatrix}

[sunting] Matriks Simetris
Matriks kotak A disebut simetris jika A = AT
Contoh matriks simetris
\begin{bmatrix}
7 & -3 \\
-3 & 5 \\
\end{bmatrix}
\begin{bmatrix}
1 & 4 & 5\\
4 & -3 & 0\\
5 & 0 & 7\\
\end{bmatrix}
Teorema
  • Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka
AT adalah simetris A + B dan A - B adalah simetris kA adalah simetris (AB)T = BTAT = BA

Jika A adalah matriks simetris yang bisa di inverse, maka A − 1 adalah matriks simetris.
Asumsikan bahwa A adalah matriks simetris dan bisa di inverse, bahwa A = AT maka :
(A − 1)T = (AT) − 1 = A − 1
Yang mana membuktikan bahwa A − 1 adalah simetris.

Produk AAT dan ATA
(AAT)T = (AT)TAT = AAT dan (ATA)T = AT(AT)T = ATA
Contoh
A adalah matriks 2 X 3
A = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}
lalu
ATA = \begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix}\begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix} = \begin{bmatrix}
10 & -2 & 11\\
-2 & 4 & -8\\
-11 & -8 & 41\\
\end{bmatrix}

AAT = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}\begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix} = \begin{bmatrix}
21 & -17 \\
-17 & 34\\
\end{bmatrix}
Jika A adalah Matriks yang bisa di inverse, maka AAT dan ATA juga bisa di inverse

TRANSPOSE PADA MATRIKS

Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.
Contoh:
Matriks
A = \begin{bmatrix}
2 & -5 & 1\\
-1 & 3 & 3\\
5 & 4 & 8\\
\end{bmatrix} ditranspose menjadi AT = \begin{bmatrix}
2 & -1 & 5\\
-5 & 3 & 4\\
1 & 3 & 8\\
\end{bmatrix}

Matriks
B = \begin{bmatrix}
1 & 3 & 5 & 7\\
9 & 5 & 7 & 4\\
4 & 1 & 5 & 3\\
\end{bmatrix} ditranspose menjadi BT = \begin{bmatrix}
1 & 9 & 4\\
3 & 5 & 1\\
5 & 7 & 5\\
7 & 4 & 3\\
\end{bmatrix}

Rumus-rumus operasi Transpose sebagai berikut:
1. ((A)T)T = A
2. (A + B)T = AT + BT dan (AB)T = ATBT
3. (kA)T = kAT dimana k adalah skalar
4. (AB)T = BTAT

DETERMINAN PADA MATRIKS

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.
Sebagai contoh, kita ambil matriks A2x2
A = \begin{bmatrix}     
a & b\\
c & d\\
\end{bmatrix} tentukan determinan A
untuk mencari determinan matrik A maka,
detA = ad - bc

Determinan dengan Minor dan kofaktor

A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
 a_{31} & a_{32} & a_{33}\\
\end{bmatrix} tentukan determinan A
Pertama buat minor dari a11

M11 = \begin{bmatrix}
a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} = detM = a22a33 x a23a32
Kemudian kofaktor dari a11 adalah
c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32
kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini
\begin{bmatrix}
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
\vdots&\vdots&\vdots&\vdots&\vdots& \\
\end{bmatrix}
Begitu juga dengan minor dari a32
M32 = \begin{bmatrix}
a_{11} & a_{13}\\
a_{21} & a_{23}\\
\end{bmatrix} = detM = a11a23 x a13a21
Maka kofaktor dari a32 adalah
c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21
Secara keseluruhan, definisi determinan ordo 3x3 adalah
det(A) = a11C11+a12C12+a13C13

[sunting] Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a12\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a13\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor baris pertama
Jawab:
det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 2\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 2(-8) + 3(-7) = -8

[sunting] Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.
Misalkan ada sebuah matriks A3x3
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}
maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,
det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a21\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a31\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32
Contoh Soal:
A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor kolom pertama
Jawab:
det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 4\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 4(-8) + 3(-7) = 8

[sunting] Adjoin Matriks 3 x 3

Bila ada sebuah matriks A3x3
A = \begin{bmatrix} 3&2&-1\\ 1&6&3 \\ 2&4&0\\ \end{bmatrix}
Kofaktor dari matriks A adalah
C11 = -12 C12 = 6 C13 = -16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16
maka matriks yang terbentuk dari kofaktor tersebut adalah
\begin{bmatrix} 12&6&-16\\ 4&2&16\\ 12&-10&16\\ \end{bmatrix}
untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom
adj(A) = \begin{bmatrix} 12&4&12\\ 6&2&-10\\ -16&16&16\\ \end{bmatrix}

[sunting] Determinan Matriks Segitiga Atas

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut
det(A) = a_{11}a_{22}\cdots a_{nn}
Contoh
\begin{bmatrix} 2&7&-3&8&3\\ 0&-3&7&5&1\\ 0&0&6&7&6\\ 0&0&0&9&8\\ 0&0&0&0&4\\ \end{bmatrix} = (2)(-3)(6)(9)(4) = -1296